Скрыть
Раскрыть

Адрес редакции:
101000, Москва, Армянский пер., 4, стр. 2 

Е-mail:
psychology.hse@gmail.com

 


Организационная психология

Латынов В. В. 1, Овсянникова В. В. 2
  • 1 Федеральное государственное бюджетное учреждение науки Институт психологии Российской академии наук, 129366, Россия, Москва, Ярославская ул., д. 13
  • 2 НИУ ВШЭ, 101000, Россия, Москва, ул. Мясницкая, д.20

Прогнозирование психологических характеристик человека на основании его цифровых следов

2020. Т. 17. № 1. С. 166–180 [содержание номера]
В статье рассматриваются вопросы прогнозирования индивидуально-психологических характеристик человека (личностных черт, эмоциональных состояний, ценностей, мотивов и др.) на основании его цифровых следов. Как показали исследования, такие характеристики можно весьма точно выявлять на основании самых разных видов цифровых следов: текстов, изображений, особенностей интернет-серфинга, характера и длительности телефонных звонков, «лайков» (мне нравится), финансовых транзакций, изменений местоположения человека. Чаще всего для решения указанной задачи применяется текстовая информация из самых разных источников (профилей пользователей, блогов, твитов и др). При ориентированном на лексику прогнозировании психологических характеристик используются два основных подхода к анализу текстов. Один, так называемый фиксированный (closed-vocabulary), использует ограниченный словарь лексики, а другой — открытый (open-vocabulary) – неограниченный словарь лексики. В случае фиксированного подхода изначально задается некоторый набор слов и категорий, взаимосвязь которых с личностными чертами выявляется. В отличие от использования фиксированного подхода, в случае открытого подхода отсутствует заранее заданный список слов, а лексические предикторы личностных черт обнаруживаются непосредственно в ходе анализа текстов. Наибольшая точность прогноза достигалась в случае личностных черт «Большой пятерки». По степени успешности прогнозирования они располагались следующим образом (от наиболее успешных к наименее): экстраверсия, открытость опыту, добросовестность, нейротизм, дружелюбие. Эмоциональные состояния, ценности, мотивы и удовлетворенность жизнью прогнозируются несколько хуже. Одновременное использование нескольких видов цифровых следов, а также более совершенных процедур сбора и анализа данных позволяет существенно повысить точность прогноза. Оцениваются ближайшие и более отдаленные перспективы исследований в данной области.
BiBTeX
RIS
 
 
Rambler's Top100 rss